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Highlighting details

Have you ever done one of those spot-the-difference newspaper puzzles where
you have to find the missing details using two very similar cartoons? The quick
way to solve them is to cut out the two images, place one on top of the other,
and shine a light through the paper.

It might sound like cheating but it’s actually science: you’re using the light
pattern from one image to show up differences in the other.

Scientists use a very similar process called interferometry to measure small
things with incredibly high accuracy by comparing light or radio beams.
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What is interference?

To understand interferometry, you need to understand interference. In ev-
eryday life, interference simply means getting in the way or meddling, but in
physics it has a much more specific meaning.

Interference is what happens when two waves carrying energy meet up and
overlap. The energy they carry gets mixed up together so, instead of two
waves, you get a third wave whose shape and size depends on the patterns
of the original two waves. When waves combine like this, the process is called
superposition.
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Constructive/destructive interference

If the two waves are in step each other, they add themselves and increase
the size of their peaks (amplitude). When waves add together to make bigger
waves, scientists call it constructive interference.

On the contrary, if the two waves are out of step, they subtract energy one
to the other and make them smaller. This is what scientists call destructive
interference.
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It’s just a phase

The extent to which one wave is in step with another is known as its phase.
If two identical waves are “in phase”, it means their peaks align so, if we add
them together, we get a new wave that’s twice as big but otherwise exactly the
same as the original waves.

Similarly, if two waves are completely out of phase, the peaks of one exactly
coincide with the troughs of the other so adding the waves together gives you
nothing at all.

In between these two extremes are all sorts of other possibilities where one
wave is partly in phase with the other. Adding two waves like this creates a
third wave that has an unusual, rising and falling pattern of peaks and troughs.
Shine a wave like this onto a screen and you get a characteristic pattern of
light and dark areas called interference fringes. This pattern is what you study
and measure with an interferometer.
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How do interferometers work?

The basic idea of interferometry involves
taking a beam of light and splitting it into two
equal halves using what’s called a
beam-splitter.
If you shine light at it, half the light passes
straight through and half of it reflects back.
One of the beams shines onto a mirror and
from there to a screen, camera, or other
detector. The other beam shines at or through
something you want to measure, onto a
second mirror, back through the beam splitter,
and onto the same screen.
This second beam travels an extra distance to
the first beam, so it gets slightly out of step
(out of phase).
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How do interferometers work?

When the two light beams meet up at the screen,
they overlap and interfere, and the phase
difference between them creates a pattern of light
and dark areas.
The light areas are places where the two beams
have added together (constructively) and become
brighter; the dark areas are places where the
beams have subtracted from one another
(destructively).
The exact pattern of interference depends on the different way or the extra
distance that one of the beams has traveled. By inspecting and measuring the
fringes, you can calculate this with great accuracy and that gives you an exact
measurement of whatever it is you’re trying to find.
Instead of the interference fringes falling on a simple screen, often they’re di-
rected into a camera to produce a permanent image called an interferogram.
In another arrangement, the interferogram is made by a detector (like the CCD
image sensor used in older digital cameras) that converts the pattern of fluc-
tuating optical interference fringes into an electrical signal that can be very
easily analyzed with a computer.
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What are interferometers used for?

Interferometers are widely used in all kinds of
scientific and engineering applications for making
accurate measurements. By scanning
interferometers over objects, you can also make
very precise maps of surfaces.
Astronomers also use interferometers to combine
signals from telescopes so they work in the same
way as larger and much more powerful
instruments that can penetrate deeper into space.
Some of these interferometers work with light
waves; others use radio waves (similar to light
waves but with much longer wavelengths and
lower frequencies).

Figure: The Keck
interferometer (Photo
courtesy of NASA Jet
Propulsion Laboratory).
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Interferential devices

Michelson interferometer

Probably best known for the part it
played in the famous
Michelson-Morley experiment in 1881.

Fizeau interferometer

It makes clearer and sharper fringes
that are easier to see and measure.
It’s widely used for making optical and
engineering measurements.
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Case study: the Large Binocular Telescope

The Large Binocular Telescope (LBT) is one of the most advanced telescopes
operating in the world.
It is located near Safford, in Arizona (USA), within the Mt. Graham Interna-
tional Observatory that includes other two telescopes: the Vatican Advanced
Technology Telescope and the Heinrich Hertz Submillimeter Telescope.
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Case study: the Large Binocular Telescope

The LBT project is a collaboration between the Italian astronomical commu-
nity, represented by the National Institute for Astrophysics (INAF), the German
astronomical community (mainly represented by the Max-Planck Institute for
Astronomy at Heidelberg), the University of Arizona and other USA institu-
tions.
The LBT consists of two 8.4 meters primary mirrors separated by a center-to-
center distance of 14.4 meters.

Marco Prato Deconvolution of interferometric images



Adaptive optics

To improve the performance of the telescope by reducing the effects of the
wavefront distortions.

A deformable mirror can change its shape in real time.
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Adaptive optics

First Light Adaptive Optics (FLAO) system @ LBT (2011)

Very close to (theoretical) Airy pattern (i.e., diffraction limit): Strehl ratio1 val-
ues up to 0.9 in K-band

1The Strehl ratio is the ratio of peak diffraction intensity of an aberrated versus perfect waveform.
In the case of AO images this parameter can be estimated by the astronomers during the
observation and provided with an error of few percent (about 4-5%).
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LBT interferometers: LBTI

Two interferometers are planned for LBT:

the LBT Interferometer (LBTI), designed
for high spatial resolution, high dynamic
range imaging in the thermal infrared and
already operating on Mount Graham. The
instrument consists of three main
subsystems.

The Universal Beam Combiner
(UBC) brings the radiation from the
two optical trains to a common axis
on the midline of the telescope
The Nulling Interferometer for the
LBT (NIL) creates and overlays the
two pupil images with the necessary
π phase shift
the Nulling-Optimized Mid-IR
Camera (NOMIC) serves as the
detector system
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LBT interferometers: LINC–NIRVANA

the forthcoming Lbt INterferometric Camera - Near InfraRed Visible Adap-
tive INterferometer for Astronomy (LINC–NIRVANA), in advanced realiza-
tion stage by a German–Italian consortium leaded by MPIA, Heidelberg.
Two planned stages:

LINC–mode: interferometric near-infrared imaging with classical AO
correction (with a single on–axis natural guide star).
NIRVANA–mode: layer–oriented (two–layers) multi–conjugated adap-
tive optics, whose detailed performance will depend not only on the
atmospheric conditions (as classical AO does), but strongly also on
the number of stars, their spatial distribution, and their magnitudes.
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Towards a point spread function

Any image acquired with a telescope has a limited band, i.e., the modulation
transfer function (MTF)2 of the telescope is zero outside a certain circular do-
main. The radius of this domain can be analytically calculated.
The monochromatic3 PSF of LINC–NIRVANA, in the case of perfect optics and
with no atmosphere, with the baseline aligned along ξ, is:

h(ξ, η) =
2Ω2

1

π

(
J1(Ω1|θ|)

Ω1|θ|

)2

cos2(Ω2ξ),

where θ2 = ξ2 + η2, Ω1 = πD/λ (D = 8.4m, the primary mirror of LBT),
Ω2 = πB/λ (B = 14.4m, the baseline length) and J1 is the Bessel function of
the first kind defined e.g. as

J1(x) =
1

π

∫ π

0

cos(τ − x sin(τ))dτ, ∀x ∈ R.

2The MTF is formally defined as the magnitude (absolute value) of the Fourier transform of the
point spread function (PSF, that is, the impulse response of the optics, the image of a point source).

3For simplicity, the bands are supposed monochromatics, i.e., only the central wavelength is
considered.
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LBT interferometers: LINC–NIRVANA

The MTF of such a PSF is formed by a central cone of diameter proportional
to Ω1 (corresponding to the primary 8.4m mirror) and two side lobs separated
by a center-to-center distance proportional to Ω2 (corresponding to the inter-
ferometric part of the PSF).
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Facing the anisotropy
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Facing the anisotropy
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Facing the anisotropy
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Facing the anisotropy
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Facing the anisotropy
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Reaching the resolution of a 22.8m telescope

Figure: MTF of three interferometric PSFs
(angles 0◦, 60◦, 120◦) combined

Figure: MTF of the PSF of a single 22.8m
telescope
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Imaging process modeling

Under suitable physical approximations, the mapping that transforms the ob-
ject into the radiation incoming on the detector can be defined by

ȳ(k) = H(k)x+ b(k) ,

where

ȳ(k) = {ȳ(k)
i }

m
i=1 ∈ Rm is a vector of sampled values of the radiation

before detection (also called exact data values);

x = {xj}nj=1 ∈ Rn is the unknown object;

b(k) = {b(k)
i }

m
i=1 is the background radiation affecting the k–th measured

image (due to sky emission, dark current, etc.);

H(k) is the m× n imaging matrix such that

H
(k)
i,j ≥ 0 ;

m∑
i=1

H
(k)
i,j > 0 , ∀j ;

n∑
j=1

H
(k)
i,j > 0 , ∀i .

We assume periodic boundary conditions, so that H(k) is the block–
circulant with circulant blocks matrix corresponding to the k–th PSF h(k).
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Noise modeling

We model the images according to the model proposed by Snyder et al.4 for
images acquired with a CCD camera, i.e., each pixel is affected by:

photon counting noise (described by a Poisson distribution);

additive read–out noise (RON), described by a Gaussian distribution.

The i–th pixel y(k)
i of the k–th measured image is then modeled as a realiza-

tion of the random variable

Y
(k)
i = P((H(k)x+ b(k))i) +N (0, σ2),

being

P(λ) a Poisson random variable with mean and variance equal to λ;

N (0, σ2) is a Gaussian random variable with zero mean and variance
equal to σ2.

4Snyder DL, Hammoud AM and White RL 1993 Image recovery from data acquired with a
charge-coupled-device camera, J Opt Soc Am A 10 1014–1023
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How to proceed

Three possibilities:

address the mixed Poisson–Gaussian model5;

use a variance stabilizing transformation (e.g.,
generalized Anscombe) based approach to
remove signal–dependency by rendering the
noise approximately Gaussian6;

add σ2 both to the detected images and the
corresponding backgrounds and view all the pixel
values of the detected images as realizations of
suitable Poisson random variables7.

5Chouzenoux E, Jezierska A, Pesquet J-C, Talbot H 2015, A convex approach for image
restoration with exact Poisson–Gaussian likelihood, SIAM J Imaging Sci 8 662–2682

6Starck J-L, Murtagh F, Bijaoui A 1998, Image processing and data analysis, Cambridge
University Press, Cambridge

7Snyder DL, Helstrom CW, Lanterman AD, Faisal M, White RL 1995, Compensation for readout
noise in CCD images, J Opt Soc Am A 12 272–283
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Maximum likelihood (ML) estimation

For K given detected images y = (y(1), . . . , y(K)), let us introduce the likeli-
hood function defined by

LYy (x) =
K∑
k=1

pY (k)(y
(k);x) .

The ML-estimate of the unknown object is any object x∗ that maximizes the
likelihood function

x∗ = argmax
x∈Rn

LYy (x) .

Sums are better than products −→ we consider the logarithm of the likelihood.
Minimization is more standard that maximization−→ we consider the negative
logarithm.
Therefore we introduce the functional

J0(x; y) = −A ln LYy (x) +B ,

where A,B are suitable constants, and we solve

x∗ = argmin
x∈Rn

J0(x; y) .
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White Gaussian noise

Example

In the case of additive white Gaussian noise, by a suitable choice of the con-
stants A,B, we obtain

J0(x; y) =

K∑
k=1

‖H(k)x+ b(k) − y(k)‖2 ,

and therefore the ML approach coincides with the well–known least–squares
(LS) approach.

J0 is convex, strictly convex if and only if the equations H(k)x = 0 have only
the solution x = 0, and it has always global minima.

Problem: the condition number of H(k) can be very large.
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Poisson noise

Example

In the case of Poisson noise, by exploiting the Stirling approximation ln(n!) ≈
n ln(n)−n, the functional J0(x; y) becomes the sum of the so-called Kullback–
Leibler (KL) divergences of H(k)x+ b(k) from y(k):

J0(x; y) =

K∑
k=1

DKL(y(k);H(k)x+ b(k))

=
K∑
k=1

m∑
i=1

{
y

(k)
i ln

y
(k)
i

(H(k)x+ b(k))i
+ (H(k)x+ b(k))i − y(k)

i

}
.

Domain: non-negative orthant.
J0 is convex, strictly convex if the equations H(k)x = 0 have only the solution
x = 0, non-negative and locally bounded→ it has global minima.
The continuous version of J0 and its minimization is an ill-posed problem →
noise strongly affects the minima of the discrete problem (checkerboard ef-
fect).
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Gauss+Poisson noise

Example

In the case of Gauss+Poisson noise, the functional J0(x) is given by

J0(x; y) = −
K∑
k=1

m∑
i=1

ln

+∞∑
l=0

exp−(H(k)x+b(k))i (H(k)x+ b(k))li
l!

e
− 1

2σ2
(l−y(k)i )2

.

J0 is convex, strictly convex if the equations H(k)x = 0 have the unique solution x = 0,
non–negative and locally bounded−→ it has global minima on the non-negative orthant.
No result about the ill-posedness of this minimization problem (numerical experience
shows that also in this case the minimum points are affected by the checkerboard effect).
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Summary

The previous examples demonstrate that, in the case of image reconstruction,
ML problems are ill-posed or ill-conditioned −→ the minimum points x∗ do not
provide sensible estimates x̄ of the unknown object.

Therefore, one must be very careful in applying to these problems methods
derived from optimization theory (in particular, second order methods).

Numerical experience (but not only) demonstrates that first order methods
(Landweber, steepest descent, conjugate gradient, etc.) can provide accept-
able (regularized) solutions by early stopping.

Since objects are non-negative, the non-negativity constraint must always be
introduced in the formulation of the minimization problems.
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Regularized ML

The previous remark is not surprising in the framework of inverse problems
theory. Indeed it is generally accepted that, if the formulation of the problem
does not use some additional information on the object, then the resulting
problem is ill-posed. This is what happens in the ML approach because we
only use information about the noise with, possibly, the addition of the non-
negativity constraint.
The additional information may consist, for instance, in prescribed bounds on
the solution and/or its derivatives up to a certain order (in general not greater
than two), and can be introduced by means of suitable functionals JR in the
objective function:

minimize J(x; y) = J0(x; y) + µJR(x)

subject to x ≥ 0 .

As follows from the examples discussed above, we can assume that both are
convex so that we have a convex minimization problem.
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Recall: KKT conditions

Theorem (Karush-Kuhn-Tucker)

Consider the minimization problem

minimize f(x)

subject to gi(x) ≥ 0 , i = 1, . . . , p

If x∗ is a regular point for the constraintsa and a relative minimum point for the
problem, then ∃µ ∈ Rp such that µ ≥ 0 and

∇f(x∗)−
p∑
i=1

µi∇gi(x∗) = 0 ,

µigi(x
∗) = 0 , i = 1, . . . , p .

aIf x∗ is a point satisfying the constraints g(x∗) ≥ 0 and J is the set of indices j for which
gj(x

∗) = 0, then x∗ is said to be a regular point for the constraints if the vectors∇gj(x∗), j ∈ J ,
are linearly independent.
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Back to the imaging problem

Since J(x; y) is convex all its minima are global. Then the KKT conditions are
necessary and sufficient conditions for a point x∗ to be a minimum of J(x; y)

x∗∇J(x∗; y) = 0 ,

x∗ ≥ 0 , ∇J(x∗; y) ≥ 0 .

Let us consider now the following decomposition of the gradient8,9

−∇J(x; y) = U(x; y)− V (x; y) ; U(x; y) ≥ 0 , V (x; y) > 0 .

Then we can write the first KKT condition as a fixed point equation

x∗ = Ty(x∗) ,

with
Ty(x) = x

U(x; y)

V (x; y)
.

8Lantéri A, Roche M, Cuevas O, Aime C 2001, A general method to devise maximum likelihood
signal restoration multiplicative algorithms with non-negativity constraints, Signal Process 81,
945–974

9Lantéri A, Roche M, Aime C 2002, Penalized maximum likelihood image restoration with
positivity constraints: multiplicative algorithms, Inverse Probl 18, 1397–1419
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Fixed point equation

The operator Ty(·) is:

well defined, since V (x; y) > 0;

continuous if the functional J(x; y) is continuously differentiable.

By applying the method of successive approximations we get the following
iterative algorithm

a) choose x(0) > 0;

b) for ` = 0, 1, . . ., compute

x(`+1) = x(`)U(x(`); y)

V (x(`); y)
.

Theorem

If the sequence of the iterates {x(`)}`∈N is convergent to x∗ and if U(x; y) > 0
for any x > 0, then x∗ is a minimum point of J(x; y).

Proof.

It is sufficient to prove that x∗ satisfies the KKT conditions.
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Scaled gradient method

Remark

about the convergence of the algorithm nothing can be said at this stage
of the analysis since the operator Ty(·), in general, is not a contraction;

all the iterates are automatically non-negative;

the algorithm is a scaled gradient method, with step-size 1:

x(`+1) = x(`) − Sk∇J(x(`); y)

where

S` = diag

{
x

(`)
j

Vj(x(`); y)

}
. (1)
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Convergence

Remark

In the papers of Lantéri et al. the algorithm is presented as a descent method
with a step-size selection:

x(`+1) = x(`) + λ`
x(`)

V (x(`); y)

{
U(x(`); y)− V (x(`); y)

}
(2)

The step-size λ` > 0 is chosen in the following way:

1) an upper bound λ(0)
` is determined in order to ensure that x(`+1) ≥ 0.

This is obtained by looking at the values of j such that x(`)
j > 0 and

[∇J(x(`); y)]j > 0. If we denote by I+ the set of these index values, then

λ
(0)
` = min

j∈I+

{
Vj(x

(`); y)

Vj(x(`); y)− Uj(x(`); y)

}
≥ 1 .

2) the step-size λ` is optimized by a line search in the interval (0, λ
(0)
` ]

using, for instance, the Armijo rule.

In such a way, the convergence of the method is ensured.
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Iterative space reconstruction algorithm

If we particularize the general algorithm to the noise models, we obtain two
well-known algorithms proposed for image reconstruction.
Indeed, in the case of Gauss noise we obtain

x(`+1) = x(`)

∑K
k=1(H(k))T y(k)∑K

k=1(H(k))TH(k)x(`) + b(k)(
U0(x; y) = 2

K∑
k=1

(H(k))T y(k) , V0(x; y) = 2

K∑
k=1

(H(k))TH(k)x+ b(k)

)
and this is the image iterative space reconstruction algorithm (ISRA), intro-
duced by Daube-Witherspoon and Muehllehner10, whose asymptotic conver-
gence has been proved by De Pierro11.
More precisely the original algorithm is with b(k) = 0, but the proof of conver-
gence can be easily extended to the case b(k) 6= 0.

10Daube-Witherspoon ME, Muehllehner G 1986, An iterative image space reconstruction
algorithm suitable for volume ECT, IEEE T Med Imaging 5, 61–66

11De Pierro AR 1987, On the convergence of the iterative image space reconstruction algorithm
for volume ECT, IEEE T Med Imaging 6, 174–175
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Richardson-Lucy algorithm

In the case of Poisson noise we obtain

x(`+1) =
x(`)∑K

k=1(H(k))T1

K∑
k=1

(H(k))T
y(k)

H(k)x(`) + b(k)

(
U0(x; y) =

K∑
k=1

(H(k))T
y(k)

H(k)x+ b(k)
, V0(x; y) =

K∑
k=1

(H(k))T1

)
and this is the generalization to the multi–image case of the expectation maxi-
mization (EM) algorithm proposed by Shepp and Vardi12and known as Richardson-
Lucy (RL) algorithm.
The convergence proof in the case b(k) = 0 is based on the following property:
if the matrix H(k) is normalized in such a way that (H(k))T1 = 1, then

n∑
j=1

x∗j =

n∑
j=1

x
(`)
j =

1

K

K∑
k=1

m∑
i=1

y
(k)
i (flux conservation).

This property is not satisfied in the case b(k) 6= 0. Therefore the convergence
of the algorithm seems not to be proved in such a case.

12Shepp LA, Vardi Y 1982, Maximum likelihood reconstruction for emission tomography, IEEE T
Med Imaging 1, 113–122
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The regularized case

In the case of a regularized functional, the general algorithm takes the form

x(`+1) = x(`)U0(x(`); y) + µUR(x(`))

V0(x(`); y) + µVR(x(`))
,

where U0(x; y), V0(x; y) come from the likelihood while UR(x), VR(x) come
from the prior.

Table: D is a matrix with non-negative entries and this example includes regularization
in terms of the discrete Laplacian

JR(x) UR(x) VR(x)

1
2
||(I −D)x||22 (D +DT )x (I +DTD)x

||x||1 0 1
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Flux conservation

If the reconstructed image has to be used for quantitative analysis it is impor-
tant to guarantee flux conservation.
For simplicity we assume that each matrix H(k) is normalized in such a way
that (H(k))T1 = 1, so that

m∑
i=1

(
n∑
j=1

H
(k)
i,j xj

)
=

n∑
j=1

xj .

Then, the flux condition or flux constraint is defined by
n∑
j=1

xj =
1

K

K∑
k=1

m∑
i=1

{y(k)
i − b

(k)
i }

.
= c .

If we introduce the flux constraint, the problem is modified as follows

minimize J(x; y) = J0(x; y) + µJR(x) (3)

subject to x ≥ 0 ,

n∑
j=1

xj = c .

We denote by C the closed and convex set that is the intersection of the non-
negative orthant with the affine subspace defined by the flux condition. We
remark that C is compact so that any sequence contained in C will contain
convergent subsequences.
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Scaled gradient projection method

In order to solve problem (3), a scaled gradient projection (SGP) method has
been proposed13,14, which can be considered a generalization of the scaled
gradient method (2).

Notations:

for a given vector x ∈ Rn, ‖x‖D is the norm induced by the n × n sym-
metric positive definite matrix D (i.e., ‖x‖D =

√
xTDx);

for some given positive scalars c1 and c2, D is the set of the n × n sym-
metric positive definite matrices D such that

c1‖x‖2 ≤ xTDx ≤ c2‖x‖2, ∀x ∈ Rn; (4)

PC,D(x) is the projection of x ∈ Rn over C in the norm ‖ · ‖D, that is

PC,D(x) = argmin
z∈C

‖z − x‖D = argmin
z∈C

(
1

2
zTDz − zTDx

)
.

13Bonettini S, Zanella R, Zanni L 2009, A scaled gradient projection method for constrained
image deblurring, Inverse Probl 25, 015002

14Bonettini S, Prato M 2015, New convergence results for the scaled gradient projection method,
Inverse Probl 31, 095008
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Algorithm SGP

1. Initialization. Let αmin, αmax ∈ R be such that 0 < αmin < αmax,
β, γ ∈ (0, 1) and let M be a positive integer.
Set x(0) ∈ C, D0 ∈ D, α0 ∈ [αmin, αmax].

FOR ` = 0, 1, 2, . . .

2. Projection. Compute the descent direction
d(`) = PC,D−1

`
(x(`) − α`D`∇J(x(`); y))− x(`).

3. Line-search. Set λ` = 1 and J̄ = max
0≤j≤min{`,M−1}

J(x(`−j); y).

WHILE J(x(`) + λ`d
(`); y) > J̄ + γλ`∇J(x(`); y)T d(`)

λ` = βλ`
END

Set x(`+1) = x(`) + λ`d
(`).

4. Update. Define D`+1 ∈ D and α`+1 ∈ [αmin, αmax].

END
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SGP features

Several reasons make this approach appealing for problem (3):

it is very simple: it belongs to the class of standard scaled gradient meth-
ods with variable step-length α` and non-monotone line-search strategy;

due to the special constraints of the problem and to appropriate choices
of D`, the projection operation in step 2 can be non-expensive;

the iterative scheme can achieve good convergence rate by exploiting
the effective step-length selection rules recently proposed in literature
(Barzilai-Borwein rules15,16, adaptive alternating strategies17,18, Ritz val-
ues19,20,...).

15Barzilai J, Borwein JM 1988, Two-point step size gradient methods, IMA J Numer Anal 8,
141–148

16Birgin EG, Martinez JM, Raydan M 2000, Nonmonotone spectral projected gradient methods
on convex sets, SIAM J Optim 10, 1196–1211

17Dai YH 2003, Alternate stepsize gradient method, Optimization 52, 395–415
18Zhou B, Gao L, Dai YH 2006, Gradient methods with adaptive step-sizes, Comput Optim Appl

35, 69–86
19Fletcher R 2012, A limited memory steepest descent method, Math Program 135, 413–436
20Porta F, Prato M, Zanni L 2015, A new steplength selection for scaled gradient methods with

application to image deblurring, J Sci Comput 65, 895–919
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Scaling matrix

The choice of the scaling matrix D` must avoid to introduce significant compu-
tational costs and, in particular, it must keep the projection PC,D−1

`
(·) in step 2

non-expensive.

Diagonal scaling−→ the projection is obtained by solving a separable quadratic
program.

Modification of the scaling matrix defined in (1):

D` = diag

{
max

{
c1,

x
(`)
j

Vj(x(`); y)

}}
,

where c1 > 0 is a prefixed threshold.

Bounds (4) are satisfied by choosing c2 = c/ν, with

ν = min
j

{
min
x∈C
{Vj(x; y)}

}
.

Marco Prato Deconvolution of interferometric images



Line-search

3. Line-search. Set λ` = 1 and J̄ = max
0≤j≤min{`,M−1}

J(x(`−j); y).

WHILE J(x(`) + λ`d
(`); y) > J̄ + γλ`∇J(x(`); y)T d(`)

λ` = βλ`
END

The line-search step of the SGP consists in a non-monotone strategy that uses
successive reductions of λ` to make J(x(`+1); y) lower than the maximum of
the objective function on the last M iterations.

Of course, if M = 1 then the strategy reduces to the standard Armijo rule.
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Step-length

The updating rule for the step-length α` is crucial for improving the conver-
gence rate of the scheme.

Barzilai-Borwein (BB) rules: regard the matrix B(α`) = (α`D`)
−1 as an ap-

proximation of the Hessian∇2J(x(`); y) and force a quasi-Newton property on
B(α`):

αBB1
` = argmin

α∈R
‖B(α)s(`−1) − z(`−1)‖

or
αBB2
` = argmin

α∈R
‖s(`−1) −B(α)−1z(`−1)‖,

where s(`−1) = x(`) − x(`−1) and z(`−1) = ∇J(x(`))−∇J(x(`−1)).

In this way, the following step-lengths are obtained

αBB1
` =

s(`−1)TD−1
` D−1

` s(`−1)

s(`−1)TD−1
` z(`−1)

, αBB2
` =

s(`−1)TD`z
(`−1)

z(`−1)TD`D`z(`−1)
.
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Alternation strategy

The step-length selection rule implemented within SGP is the ABBmin1 strat-
egy21, which consists in the following adaptive alternation scheme:

IF ` ≤ 20 THEN
α` = minj=max{1,`+1−Mα},...,` α

(2)
j ; (�)

ELSE IF α
(2)
` /α

(1)
` ≤ τ` THEN

Set α` as in (�)
τ`+1 = 0.9 · τ`;

ELSE
α` = α

(1)
` ; τ`+1 = 1.1 · τ`;

ENDIF

where Mα is a prefixed positive integer and τ1 ∈ (0, 1).

21Frassoldati G, Zanni L, Zanghirati G 2008, New adaptive stepsize selections in gradient
methods, J Ind Manag Optim 4, 299–312
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Convergence results

Convergence results of the sequence generated by SGP have been proved:

stationarity of any limit point for nonconvex J22;

convergence to a minimum point (if it exists) for convex J under conditions
on the eigenvalues of the scaling matrices sequence {D`}`∈N:

µ2
` = 1 + ξ`, ξ` ≥ 0,

∞∑
`=0

ξ` <∞.

If∇J is either globally Lipschitz continuous or locally Lipschitz continuous
and J is level bounded on dom(J), then a O(1/`) convergence rate with
respect to the objective function holds23;

convergence to a limit point (if it exists) for Kurdyka–Łojasiewicz functions
J , plus J–dependent results on the convergence rate of both sequences
{x(`)}`∈N and {J(x(`))}`∈N24.

22Bonettini S, Zanella R, Zanni L 2009, A scaled gradient projection method for constrained
image deblurring, Inverse Probl 25, 015002

23Bonettini S, Prato M 2015, New convergence results for the scaled gradient projection method,
Inverse Probl 31, 095008

24Bonettini S, Loris I, Porta F, Prato M, Rebegoldi S 2017, On the convergence of a linesearch
based proximal-gradient method for nonconvex optimization, Inverse Probl 33, 055005
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Astronomical Image Restoration in interferometrY (AIRY) 7.0

SGP, together with other powerful tools for simulating observations and recon-
structing real data, is included in the Software Package AIRY 7.025, a freely
downloadable (http://lagrange.oca.eu/caos) IDL–based package of the Code
for Adaptive Optics Systems Problem-Solving Environment (CAOS PSE).

25La Camera A et al 2016, The software package AIRY 7.0: new efficient deconvolution methods
for post-adaptive optics data, Proceedings of SPIE 9909, 99097T
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Regularizers

Tikhonov regularizations

JR(x) =
1

2

∑
n

|x(n)|2 , JR(x) =
1

2

∑
n

D2(n) , JR(x) =
1

2

∑
n

(∆x)(n)2

Cross-Entropy regularization [Byrne CL 1993, IEEE T Image Proc 2, 96–103]

JR(x) =
∑
n

{
x(n) ln

(
x(n)

x̄(n)

)
+ x̄(n)− x(n)

}
`1 regularization

JR(f) =
∑
n

x(n)

Hypersurface potential [Charbonnier P et al 1997, IEEE T Image Proc 6, 298–311]

JR(f) =
∑
n

√
δ2 + D2(n) , δ > 0

n = (n1, n2) , x(n) = x(n1, n2) , n1± = (n1 ± 1, n2) , n2± = (n1, n2 ± 1)

D
2
(n) =

[
x(n1+)− x(n)

]2
+
[
x(n2+)− x(n)

]2
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Regularizers

Markov random field regularization [Geman S, Geman D 1984, IEEE T Pattern Anal

Mach Intell 6, 721–741]

JR(x) =
1

2

∑
n

∑
n′∈N (n)

√
δ2 +

(
x(n)− x(n′)

ε(n′)

)2

,

where δ > 0, N (n) is a symmetric neighborhood made up of the eight
first neighbors of n and ε(n′) is equal to 1 for the horizontal and vertical
neighbors and equal to

√
2 for the diagonal ones.

MISTRAL regularization [Mugnier LM et al 2004, J Opt Soc Am A 21, 1841–1854]

JR(f) =
∑
n

{
|D(n)| − δ ln

(
1 +
|D(n)|
δ

)}
, δ > 0

n = (n1, n2) , x(n) = x(n1, n2) , n1± = (n1 ± 1, n2) , n2± = (n1, n2 ± 1)

|D(n)| =
√[

x(n1+)− x(n)
]2+[x(n2+)− x(n)

]2
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Numerical results - Simulations

PSFs corresponding to three equispaced orientations of the baseline (0◦,
60◦, 120◦) generated with the code LOST26(SR ∼ 70%)

two test objects: a 512×512 HST image of the planetary nebula NGC7027
(with two magnitudes, 10 and 15) and a model of an open star cluster
based on an image of the Pleiades, consisting of 9 stars with magnitudes
ranging from 12.86 to 15.64

blurred images perturbed with a constant background of about 13.5 mag
arcsec−2, corresponding to observations in K-band, and with both Pois-
son and Gaussian noises (σ = 10 e−/px)

added σ2 to both images and backgrounds and chosen J0 as the Kullback–
Leibler divergence (no explicit regularization)

26Arcidiacono C et al 2004, Layer-oriented simulation tool, Appl Optics 43, 4288–4302
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Numerical results - Simulations

Figure: Blurred and noisy images for the nebula (magnitude 15 - top row) and the star
cluster (bottom row)
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Numerical results - Simulations

Table: Reconstruction of the nebula using three equispaced 512× 512 images (CUDA
version of the algorithms based on GPUlib). Number of iterations tuned in order to
minimize the relative RMSE w.r.t. the true object.

m = 10
Algorithm It Err Sec SpUp

RL 3401 0.032 4364 -
RL_CUDA 3401 0.032 48.00 90.9

SGP 144 0.033 220.7 -
SGP_CUDA 144 0.033 3.563 61.9

m = 15
Algorithm It Err Sec SpUp

RL 353 0.091 441.5 -
RL_CUDA 353 0.091 4.937 89.4

SGP 16 0.087 26.14 -
SGP_CUDA 16 0.087 0.546 47.9
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Numerical results - Simulations

Table: Reconstruction of the star cluster with three 512× 512 equispaced images. The
error is the average relative error in the magnitudes. Number of iterations tuned in order
to satisfy a stopping criterion on the difference between two successive values of J0.

µ = 1e-3
Algorithm It Err Sec SpUp

RL 319 2.39e-4 393.4 -
RL_CUDA 319 2.38e-4 4.641 84.8

SGP 71 1.35e-3 97.80 -
SGP_CUDA 71 1.29e-3 1.641 59.6

µ = 1e-5
Algorithm It Err Sec SpUp

RL 1385 6.65e-5 1703 -
RL_CUDA 1385 6.64e-5 19.38 87.9

SGP 337 5.89e-4 455.2 -
SGP_CUDA 337 1.79e-4 7.187 63.3

µ = 1e-7
Algorithm It Err Sec SpUp

RL 7472 5.64e-5 9180 -
RL_CUDA 7472 5.98e-5 104.8 87.6

SGP 572 7.37e-5 772.6 -
SGP_CUDA 572 7.05e-5 12.20 63.3

av_rel_er =
1

q

q∑
j=1

|mj − m̃j |
m̃j

, |J0(x(k+1)
; y)− J0(x(k)

; y)| ≤ µ J0(x(k)
; y)
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Numerical results - Simulations

Figure: True image of the nebula (magnitude 10 - left panel) and SGP reconstruction
(right panel)
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Application to real data: Io imaging

Seven interferometric images of Io observed with LBTI during UT 2013
December 24.

PSF derived from the image of the star HD-78141.

During the observation time of about 1 hour the Io relative orbital rotation
is of 7.7◦.

Figure: Three (of seven) interferometric images, showing the variation of the parallactic
angle of about 60◦
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Multi–component method (MCM)

Idea27,28: considering the image to be reconstructed as the sum of two com-
ponents xE (extended) and xP (pointwise)

New formulation:

min
(xE ,xP )∈Ω

J(xE , xP ; y) ≡ J0(xE + xP ; y) + µJR(xE),

where

Ω =

{
(xE , xP ) ∈

(
RN×N≥0

)2

| xP (n) = 0 ∀n ∈ S \ P ,
∑
n∈S

(xE + xP )(n) = c

}

and P is a given prefixed sub-region of the N × N region S where the bright
sources are located.

27De Mol C, Defrise M 2004, Inverse imaging with mixed penalties, Proc Int Symp on
Electromagnetic Theory, 798–800

28Giovannelli J-F, Coulais A 2005, Positive deconvolution for superimposed extended source and
point sources, Astron Astrophys 439, 401–412
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Multi–step approach

Step 1 - Deconvolve the observed images with SGP with an edge–pre-
serving regularization and a small value of µ (sharpening of the image +
removal of the interferometric fringes)

Step 2 - Determine the centroids of the bright regions and produce a mask
which is one over small regions around the centroids, and zero elsewhere

Step 3 - Apply MCM to the observed images and a regularizer which looks
appropriate to the underlying structure

Step 4 - If xE is the reconstruction of the structure in Step 3, then we write
the unknown object as x = x′ + xE and we can recover x′ by applying
SGP, without regularization, to the observed images

The final result is the sum of the results of Step 3 and Step 4.
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Parameters setting

Initialization: the fluxes of the point-wise objects in x
(0)
P are chosen as

those of the corresponding pixels of the background-subtracted observed
image y(1). The remaining flux of the measured images (i.e., the value
obtained by subtracting the flux of x(0)

P from the total flux c) is then spread
on a constant N × N matrix x(0)

E , which represents the starting point for
the extended object.

µ parameter: since µ provides a balance between the two terms of J ,
then one can estimate the value of J0 and the order of magnitude of JR,
do a search around the value of µ provided by the quotient J0/JR and
look for a solution which could be the best for his purposes.

δ parameter: one can compute the mean value δmean of the gradient on
the observed image. Then a search of δ around the value of δmean is
desirable, in order to find the best value for the user.

All the other SGP parameters have been optimized according to a huge amount
of tests carried out in several applications and have been left unchanged.
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LBTI Io reconstructions (M-band)

First row: Three (of seven) interferometric images, showing the variation of
the parallactic angle of about 60◦. Second row: Reconstructed surface of Io
as obtained at Step 3 with MRF regularization, δ = 1 and µ = 0.05 (left),
reconstruction of the hot spots (middle) and complete reconstruction (right).
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Generalization: boundary effect corrections

Generalizations of the approach have been developed to address:

Boundary effect corrections. If the target x is not completely contained
in the image domain, then the previous deconvolution methods produce
annoying boundary artifacts. The proposed approach can be generalized
in order to reconstruct x over a domain broader than that of the detected
images29.

Blind deconvolution. If the PSF is not available, then it might be included
in the unknowns of the minimization problem, where the corresponding
feasible set results in the set of non–negative arrays normalized to 1 and
with maximum value deduced by the Strehl ratio of the telescope. The
proposed approach can be exploited within an alternating minimization
scheme to provide both the target x and the PSFs h(1), . . . , h(K)30,31.

29Prato M, Cavicchioli R, Zanni L, Boccacci P, Bertero M 2012, Efficient deconvolution methods
for astronomical imaging: algorithms and IDL-GPU codes, Astron Astrophys 539, A133

30Prato M, La Camera A, Bonettini S, Bertero M 2013, A convergent blind deconvolution method
for post-adaptive-optics astronomical imaging, Inverse Probl 29, 065017

31Prato M, La Camera A, Bonettini S, Rebegoldi S, Bertero M, Boccacci P 2015, A blind
deconvolution method for ground based telescopes and Fizeau interferometers, New Astron 40,
1–13
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